
Vishay Siliconix

Power MOSFET

PRODUCT SUMMARY						
V _{DS} (V)	- 100					
R _{DS(on)} (Ω)	V _{GS} = - 10 V 0.30					
Q _g (Max.) (nC)	38					
Q _{gs} (nC)	6.8					
Q _{gd} (nC)	21					
Configuration	Single					

FEATURES

- Dynamic dV/dt Rating
- Repetitive Avalanche Rated
- P-Channel
- 175 °C Operating Temperature
- Fast Switching
- · Ease of Paralleling
- Simple Drive Requirements
- Lead (Pb)-free Available

DESCRIPTION

Third generation Power MOSFETs from Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 W. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

ORDERING INFORMATION			
Package	TO-220		
Lead (Pb)-free	IRF9530PbF		
Leau (FD)-liee	SiHF9530-E3		
SnPb	IRF9530		
	SiHF9530		

ABSOLUTE MAXIMUM RATINGS T	$C = 25 \ ^{\circ}C$, unless otherw	ise noted			
PARAMETER	SYMBOL	LIMIT	UNIT		
Drain-Source Voltage		V _{DS}	- 100	- v	
Gate-Source Voltage	V _{GS}	± 20			
Continuous Drain Current	V_{GS} at - 10 V $\frac{T_{C} = 25 \degree C}{T_{C} = 100 \degree C}$	I _D	- 12		
	$T_{\rm C} = 100 ^{\circ}{\rm C}$		- 8.2	А	
Pulsed Drain Current ^a	I _{DM}	- 48			
Linear Derating Factor			0.59	W/°C	
Single Pulse Avalanche Energy ^b		E _{AS}	400	mJ	
Repetitive Avalanche Current ^a		I _{AR}	- 12	А	
Repetitive Avalanche Energy ^a	E _{AR}	8.8	mJ		
Maximum Power Dissipation	T _C = 25 °C	PD	88	W	
Peak Diode Recovery dV/dt ^c		dV/dt	- 5.5	V/ns	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to + 175		
Soldering Recommendations (Peak Temperature)	for 10 s		300 ^d	- °C	
Mounting Torque	6-32 or M3 screw		10	lbf ⋅ in	
	0-32 OF M3 SCIEW	F	1.1	N · m	

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).

b. $V_{DD} = -25 \text{ V}$, starting $T_J = 25 \text{ °C}$, L = 4.2 mH, $R_G = 25 \Omega$, $I_{AS} = -12 \text{ A}$ (see fig. 12).

c. $I_{SD} \leq$ - 12 A, dl/dt \leq 140 A/µs, $V_{DD} \leq V_{DS}, \, T_J \leq$ 175 °C.

d. 1.6 mm from case.

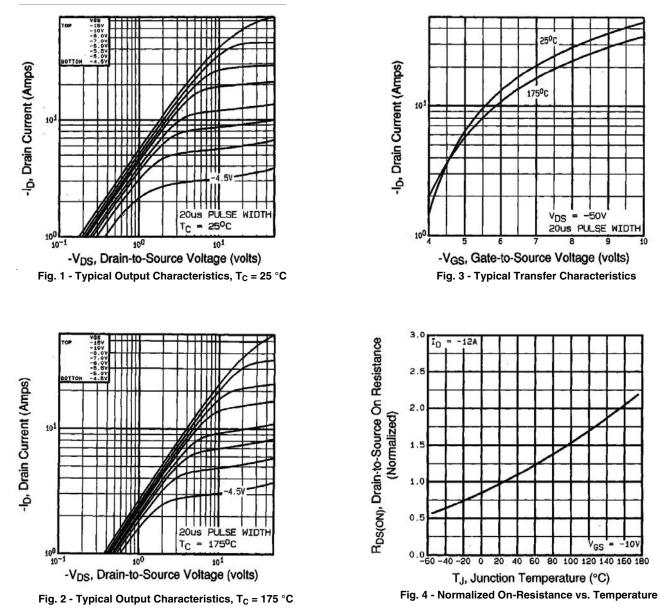
* Pb containing terminations are not RoHS compliant, exemptions may apply

Vishay Siliconix

Static VDS	THERMAL RESISTANCE RAT	TINGS							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	PARAMETER	SYMBOL	TYP. MAX.			UNIT			
Maximum Junction-to-Case (Drain) R_{Buc} - 1.7 SPECIFICATIONS T _J = 25 °C, unless otherwise noted TYP. MAX. U Static Viss Viss = 0 V, I_0 = -250 µA -100 - - - - 0.10 - Viss	Maximum Junction-to-Ambient	R _{thJA}	- 62						
	Case-to-Sink, Flat, Greased Surface	R _{thCS}	0.50	0.50 -				°C/W	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Maximum Junction-to-Case (Drain)	R _{thJC}	- 1.7						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		unless othern	vise noted						
Static VDB VDB VDB VDB C C C VDB Oraln-Source Breakdown Voltage V_{DS} Reference to 25 °C, tp = -1 mA - - 0.10 - VDB Gate-Source Threshold Voltage $V_{OS}(m)$ $V_{DB} = V_{OS}, t_{D} = -250 \mu A$ -2.0 - 4.0 Gate-Source Leakage Loss $V_{DB} = V_{OS}, t_{D} = -250 \mu A$ - - - 100 - - - - - - - - - - - - - - - 0.00 - - - - 0.00 - - - 0.00 - - - 0.00 - - 0.00 - - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 -						MIN	тур	MAY	UNIT
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		STMBOL	TEST	CONDIT	10113	IVIIIN.	116.	WAA.	UNIT
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		V	V - 0		250 4	100	[-	V
					-	- 100			V
Gate-Source Leakage I $_{GSS}$ $V_{GS} = \pm 20$ V - + 100 1 Zero Gate Voltage Drain Current I_{DSS} $V_{DS} = -100$ V, $V_{GS} = 0$ V - - - - - - 100 V Drain-Source On-State Resistance $R_{DS(on)}$ $V_{GS} = -10$ V $I_D = -7.2$ A ^b - - 0.30 Forward Transconductance g_{IS} $V_{GS} = -10$ V $I_D = -7.2$ A ^b - 0.30 Output Capacitance G_{ISS} $V_{DS} = -50$ V, $I_D = -7.2$ A ^b - 0.30 - Output Capacitance C_{ISS} $V_{DS} = -50$ V, $I_D = -7.2$ A ^b 3.7 - - Output Capacitance C_{ISS} $V_{DS} = -50$ V, $I_D = -7.2$ A ^b 3.7 - - 340 - Total Gate Charge Q_{g} $V_{GS} = -10$ V $I_D = -12$ A, $V_{DS} = -80$ V, See fig. 6 and 13 ^b - - 6.8 - - 21 - - 12 - - 12 - 12 - 12 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>V/°C</td></td<>						-			V/°C
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0		-		-	- 2.0		-	V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Leakage	I _{GSS}				-			nA
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Zero Gate Voltage Drain Current	I _{DSS}						μA	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-		-	1	-	-	-		-
Dynamic Input Capacitance Ciss $V_{GS} = 0 V$, $V_{DS} = -25 V$, f = 1.0 MHz, see fig. 5 - 860 - Output Capacitance Crss $reverse Transfer Capacitance$ C_{rss} $reverse Transfer Capacitance - 340 - - 340 - - 93 - - 93 - - 340 - - 38 - - 340 - - - 38 - - - 38 - - - 6.8 - - - 6.8 - - - 6.8 - - - 6.8 - - - 6.8 - - - 12 - - 6.8 - - - 12 - - 12 - - 12 - - 131 - - 31 - - 31 - - 33 - - - 12 - - $	Drain-Source On-State Resistance	R _{DS(on)}				-	-	0.30	Ω
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Forward Transconductance	9 _{fs}	V _{DS} = - :	50 V, I _D =	- 7.2 A ^b	3.7	-	-	S
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Dynamic								-
$ \begin{array}{ c c c c c } \hline \text{Output Capacitance} & C_{OSS} & V_{DS} = -25 \text{ V}, & -& 340 & -& -& -& -& -& -& -& -& -& -& -& -& -$	Input Capacitance	C _{iss}		$V_{GS} = 0 V$		-	860	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Output Capacitance	C _{oss}	$V_{DS} = -25 V,$		-	340	-	pF	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Reverse Transfer Capacitance	C _{rss}	f = 1.0	MHZ, See	e fig. 5	-	93	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Total Gate Charge	Qg			12 A, V _{DS} = - 80 V,	-	-	38	nC
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Charge	Q _{gs}	V _{GS} = - 10 V	I _D = - 12		-	-	6.8	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Drain Charge	Q _{gd}		0001	ig. o and to	-	-	21	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-On Delay Time	t _{d(on)}				-	12	-	
$\begin{tabular}{ c c c c c c } \hline Turn-Off Delay Time & t_d(off) & R_G = 12 \ \Omega, R_D = 3.9 \ \Omega, see fig. 10^b & - & 31 & - & \\ \hline Fall Time & t_f & - & 39 & - & \\ \hline Internal Drain Inductance & L_D & Between lead, & & & & & & \\ f mm (0.25") from & & & & f mm (0.25") from & & & & & \\ p ackage and center of & & & & & & \\ \hline Internal Source Inductance & L_S & & & & & \\ \hline Drain-Source Body Diode Characteristics & & & & & & \\ \hline Drain-Source Drain Diode Current & I_S & MOSFET symbol & & & & & & \\ Pulsed Diode Forward Current^a & I_{SM} & & & & & \\ \hline Integral reverse & & & & & & \\ \hline Dody Diode Voltage & V_{SD} & T_J = 25 \ C, \ I_F = -12 \ A, \ dl/dt = 100 \ A/\mus^b & - & & & & \\ \hline 1 & 120 & 240 & & \\ \hline 1 & 0.46 & 0.92 &$	Rise Time			50 V. In =	- 12 A.	-	52	-	
Fall Timetr-39-Internal Drain Inductance L_D Between lead, 6 mm (0.25") from package and center of die contact-4.5-Internal Source Inductance L_S L_S 7.5-Drain-Source Body Diode CharacteristicsContinuous Source-Drain Diode Current I_S MOSFET symbol showing the integral reverse $p - n$ junction diode12Pulsed Diode Forward Currenta I_{SM} $T_J = 25 ^\circ C$, $I_S = -12 A$, $V_{GS} = 0 V^b$ Body Diode Reverse Recovery Time t_{rr} $T_J = 25 ^\circ C$, $I_F = -12 A$, $dI/dt = 100 A/\mu s^b$ -120240-Body Diode Reverse Recovery Charge Q_{rr} $T_J = 25 ^\circ C$, $I_F = -12 A$, $dI/dt = 100 A/\mu s^b$ -0.460.92-	Turn-Off Delay Time	t _{d(off)}			-	31	-	ns	
Internal Drain inductanceLD6 mm (0.25") from package and center of die contact-4.3-Internal Source InductanceLS L_S -7.5-Drain-Source Body Diode CharacteristicsContinuous Source-Drain Diode CurrentISMOSFET symbol showing the integral reverse $p - n$ junction diode12Pulsed Diode Forward CurrentaISMT_J = 25 °C, I_S = - 12 A, V_{GS} = 0 VbBody Diode Reverse Recovery TimetrrT_J = 25 °C, I_F = - 12 A, dl/dt = 100 A/µsb6.3Body Diode Reverse Recovery ChargeQrrT_J = 25 °C, I_F = - 12 A, dl/dt = 100 A/µsb-0.460.921	Fall Time					-	39	-	
Internal Source InductanceLS $Pachage and context of the output of$	Internal Drain Inductance	L _D	6 mm (0.25") from ackage and center of		-	4.5	-		
Continuous Source-Drain Diode CurrentIsMOSFET symbol showing the integral reverse p - n junction diode12Pulsed Diode Forward CurrentaIsmIsmT_J = 25 °C, I_S = - 12 A, V_{GS} = 0 V^b <td>Internal Source Inductance</td> <td>Ls</td> <td>-</td> <td>7.5</td> <td>-</td> <td>nH</td>	Internal Source Inductance	Ls			-	7.5	-	nH	
Contributes Source-Drain Diode OutlentIsshowing the integral reverse p - n junction diodeIsIsPulsed Diode Forward Currenta I_{SM} I_{SM} $T_J = 25 \text{ °C}, I_S = -12 \text{ A}, V_{GS} = 0 \text{ Vb}$ 48Body Diode Voltage V_{SD} $T_J = 25 \text{ °C}, I_S = -12 \text{ A}, V_{GS} = 0 \text{ Vb}$ 6.3Body Diode Reverse Recovery Time t_{rr} $T_J = 25 \text{ °C}, I_F = -12 \text{ A}, dI/dt = 100 \text{ A/µsb}$ -120240Body Diode Reverse Recovery Charge Q_{rr} 0.460.921	Drain-Source Body Diode Characteristic	s							
Pulsed Diode Forward CurrentaI I SMIntegral reverse p - n junction diode48Body Diode VoltageV SDT T J = 25 °C, I S = - 12 A, V GS = 0 Vb48Body Diode Reverse Recovery Timetrr Tr OutputT T J = 25 °C, I F = - 12 A, dI/dt = 100 A/µsb6.3Body Diode Reverse Recovery ChargeQ rrT OutputT T Output-1202400.460.92-	Continuous Source-Drain Diode Current	I _S	showing the integral reverse		-	-	- 12	A	
Body Diode Reverse Recovery Time t_{rr} $T_J = 25 \ ^{\circ}C$, $I_F = -12 \ ^{\circ}A$, $dI/dt = 100 \ ^{\circ}A/\mu s^b$ $ 120$ 240 Body Diode Reverse Recovery Charge Q_{rr} $T_J = 25 \ ^{\circ}C$, $I_F = -12 \ ^{\circ}A$, $dI/dt = 100 \ ^{\circ}A/\mu s^b$ $ 0.46$ 0.92	Pulsed Diode Forward Currenta	I _{SM}			-	-	- 48		
Body Diode Reverse Recovery Time t_{rr} $T_J = 25 \ ^{\circ}C$, $I_F = -12 \ ^{\circ}A$, $dl/dt = 100 \ ^{\prime}A/\mu s^b$ $ 120$ 240 Body Diode Reverse Recovery Charge Q_{rr} $T_J = 25 \ ^{\circ}C$, $I_F = -12 \ ^{\circ}A$, $dl/dt = 100 \ ^{\prime}A/\mu s^b$ $ 0.46$ 0.92	Body Diode Voltage	V _{SD}	$T_J = 25 \text{ °C}, I_S = -12 \text{ A}, V_{GS} = 0 \text{ V}^{b}$		-	-	- 6.3	V	
Body Diode Reverse Recovery Charge Q_{rr} $I_J = 25 \ ^{\circ}C$, $I_F = -12 \ ^{\circ}A$, $dI/dt = 100 \ ^{\circ}A/\mu s^0$ -0.460.92I	Body Diode Reverse Recovery Time				-	120	240	ns	
	Body Diode Reverse Recovery Charge				-	0.46	0.92	μC	
Forward Turn-On Time ton Intrinsic turn-on time is negligible (turn-on is dominated by L _S and L _D)	Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn			-on is don	ninated by	/ L _S and I	

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width \leq 300 μ s; duty cycle \leq 2 %.


175⁰C

Vishay Siliconix

V_{DS} = -50V 20us PULSE WIDTH

8

10

GS

20 40 60 80 100 120 140 160 180

Vishay Siliconix

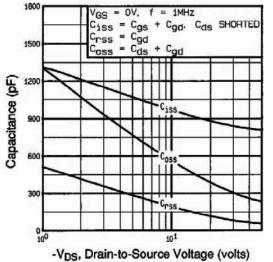


Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

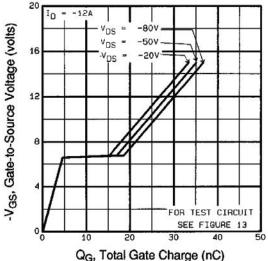
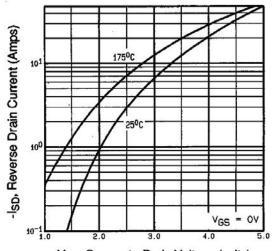
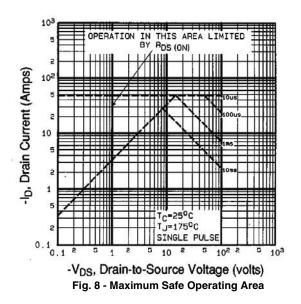




Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

-V_{SD}, Source-to-Drain Voltage (volts) Fig. 7 - Typical Source-Drain Diode Forward Voltage

Vishay Siliconix

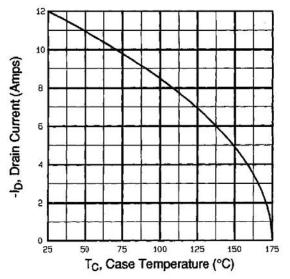


Fig. 9 - Maximum Drain Current vs. Case Temperature

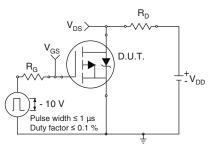


Fig. 10a - Switching Time Test Circuit

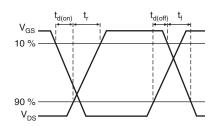


Fig. 10b - Switching Time Waveforms

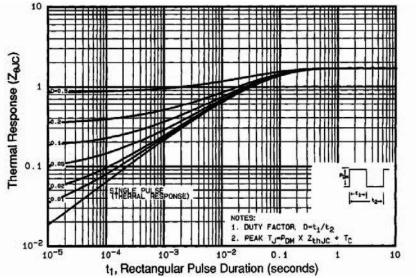


Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

Vishay Siliconix

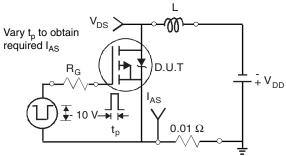
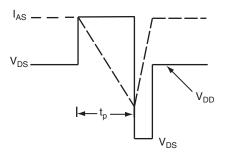
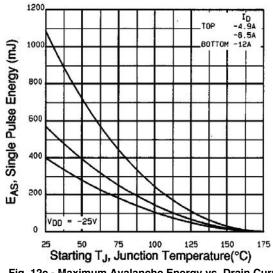
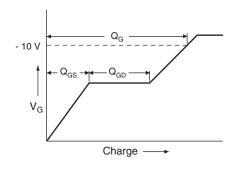
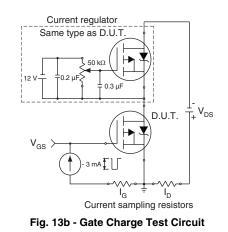
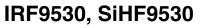
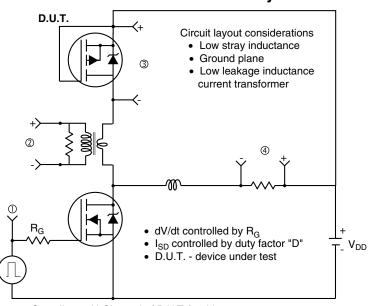




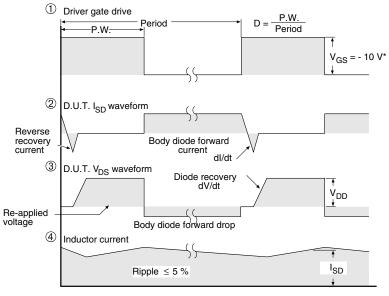
Fig. 12a - Unclamped Inductive Test Circuit

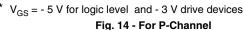
VISHAY

Fig. 12b - Unclamped Inductive Waveforms


Fig. 13a - Basic Gate Charge Waveform


Vishay Siliconix



Peak Diode Recovery dV/dt Test Circuit

• Compliment N-Channel of D.U.T. for driver

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?91076.

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.